CATATAN

Puji dan Syukur saya panjatkan ke Hadirat Allah SWT, karena berkat Rahmat dan Karunia-Nya sehingga saya dapat membuat dan menyusun Blog ini dengan baik dan tepat pada waktunya. Dalam Blog ini saya membahas mengenai Materi-materi yang dipelajari ketika mengikuti mata kuliah Termodinamika.

Blog ini dibuat dengan berbagai pengumpulan data dan informasi dari berbagai buku dan link juga untuk menyelesaikan tantangan dan hambatan selama mengerjakan dan pembuatan Blog ini, dimana Blog ini sendiri dibangun untuk memenuhi salah satu proyek mata kuliah Termodinamika dengan dosen pengampu Bapak Apit Fathurohman, S. Pd., M. Si. Tak dapat dipungkiri bimbingan dari dosen pengampu saya sangatlah penting dan mengambil andil tersendiri dalam pembuatan Blog ini, Oleh karena itu, saya mengucapkan terima kasih yang sebesar-besarnya.

Saya menyadari bahwa masih banyak kekurangan yang mendasar pada isi maupun tampilan Blog ini. Oleh karena itu saya mengundang pembaca untuk memberikan saran serta kritik yang dapat membangun bagi Blog ini. Kritik konstruktif dari pembaca sangat kami harapkan untuk penyempurnaan Blog ini.

Akhir kata semoga Blog ini dapat memberikan manfaat bagi kita sekalian.

Palembang, Januari 2015

Pembuat Blog

Desty Permata Sari

(06111381320004)

Sabtu, 25 April 2015

Mesin Bensin (Siklus Otto)



Siklus Otto adalah siklus termodinamika yang paling banyak digunakan dalam kehidupan manusia. Mobil dan sepeda motor berbahan bakar bensin (Petrol Fuel) adalah contoh penerapan dari sebuah siklus Otto. Mesin bensin dibagi menjadi dua, yaitu mesin dua tak dan mesin empat tak.Mesin dua tak adalah mesin yang memerlukan dua kali gerakan piston naik turun untuk sekali pembakaran (agar diperoleh tenaga).Mesin tersebut banyak digunakan pada motor-motor kecil. Mesin dua tak menghasilkan asap sebagai sisa pembakaran dari oli pelumas. Mesin empat tak memerlukan empat kali gerakan piston untuk sekali pembakaran. Pada motor-motor besar biasa menggunakan mesin empat tak. Akan tetapi, sekarang banyak motor-motor kecil bermesin empat tak. Mesin jenis ini sedikit menghasilkan sisa pembakaran karena bahan bakarnya hanya bensin murni.

Gambar di atas merupakan mesin pembakaran dalam empat langkah (empat tak).Mula-mula campuran udara dan uap bensin mengalir dari karburator menuju silinder pada saat piston bergerak ke bawah (langkah masukan).Selanjutnya campuran udara dan uap bensin dalam silinder ditekan secara adiabatik ketika piston bergerak ke atas (langkah kompresi atau penekanan).Karena ditekan secara adiabatik maka suhu dan tekanan campuran meningkat. Pada saat yang sama, busi memercikkan bunga api sehingga campuran udara dan uap bensin terbakar. Ketika terbakar, suhu dan tekanan gas semakin bertambah. Gas bersuhu tinggi dan bertekanan tinggi tersebut memuai terhadap piston dan mendorong piston ke bawah (langkai pemuaian).Selanjutnya gas yang terbakar dibuang melalui katup pembuangan dan dialirkan menuju pipa pembuangan (langkah pembuangan).Katup masukan terbuka lagi dan keempat langkah tersebut diulangi kembali.
Tujuan dari adanya langkah kompresi atau penekanan adiabatik adalah menaikkan suhu dan tekanan campuran udara dan uap bensin. Proses pembakaran pada tekanan yang tinggi akan menghasilkan suhu dan tekanan (P = F/A) yang sangat besar. Akibatnya gaya dorong (F = PA) yang dihasilkan selama proses pemuaian menjadi sangat besar. Mesin motor atau mobil menjadi lebih bertenaga. Walaupun tidak ditekan, campuran udara dan uap bensin bisa terbakar ketika busi memercikkan bunga api. Tapi suhu dan tekanan gas yang terbakar tidak terlalu tinggi sehingga gaya dorong yang dihasilkan juga kecil. Akibatnya mesin menjadi kurang bertenaga.
Proses perubahan bentuk energi dan perpindahan energi pada mesin pembakaran dalam empat langkah di atas bisa dijelaskan seperti ini : Ketika terjadi proses pembakaran, energi potensial kimia dalam bensin + energi dalam udara berubah menjadi kalor alias panas. Sebagian kalor berubah menjadi energi mekanik batang piston dan poros engkol, sebagian kalor dibuang melalui pipa pembuangan (knalpot).Sebagian besar energi mekanik batang piston dan poros engkol berubah menjadi energi mekanik kendaraan (kendaraan bergerak), sebagian kecil berubah menjadi kalor alias panas sedangkan panas timbul akibat adanya gesekan.
Secara termodinamika, siklus Otto memiliki 4 buah proses termodinamika yang terdiri dari 2 buah proses isokhorik (volume tetap) dan 2 buah proses adiabatis (kalor tetap).

Gambar siklus Otto
Proses yang terjadi adalah :
1-2 : Kompresi adiabatis
2-3 : Pembakaran isokhorik
3-4 : Ekspansi / langkah kerja adiabatis
4-1 : Langkah buang isokhorik
Sesuai hukum 1 termodinamika, kesetaraan panas dan gerak dapat dituliskan sebagai persamaan energi sebagai berikut:

Keterangan:
Q = panas yang keluar atau masuk sistem (joule)
ΔU = perubahan energi dalam (joule)
W= kerja yang diberikan sistem (joule)
Rancangan motor bakar diinginkan agar mampu mengubah sebanyak-banyaknya energi panas menjadi gerak. Untuk itu diperlukan pengetahuan teori mengenai efisiensi sistem tersebut. Dalam hal ini, efisiensi dari siklus Otto ialah:

Dengan:
Qin ialah panas yang dimasukkan ke dalam sistem.
Pada siklus di atas D U = 0, karena pada akhir siklus posisi grafik kembali ke titik semula (atau keadaan fluida pada akhir siklus sama seperti pada awal siklus), sehingga:

Dengan:
Qout ialah panas yang dikeluarkan dari sistem
Dengan demikian, efisiensi siklus akan sebesar:

Persamaan penambahan panas pada volume konstan pada siklus di atas ialah,

Sedang pengeluaran panas pada volume tetap ialah,

Dengan cv ialah panas spesifik udara pada volume tetap. (Notasi 1, 2, 3, dan 4 pada persamaan di atas adalah sesuai dengan titik-titik pada grafik dalam gambar 4 di atas.)
Sehingga efisiensi siklus ialah,

Proses 1-2 dan 3-4 adalah adiabatik, sehingga

dan

Sedangkan dari grafik terlihat bahwa V1 = V4 dan V3 = V2, maka

Dengan demikian, maka

Sehingga efisiensi siklus pada persamaan (a) akan menjadi

Dalam hal in r = V1/V2 adalah perbandingan kompresi motor

Tidak ada komentar:

Posting Komentar